Papers

Linear dispersive theory

  1. J.L. Journé, A. Soffer and C.S. Sogge, NEEDS CHANGE Estimates for time dependent Schrödinger Equations, Bull., AMS, 23, No. 2, 1990.
    Get from :    Google-Scholar   Journal

Quantum resonances

  1. A. Soffer, M. Weinstein, Time Dependent resonance theory, Geometric and Functional Analysis, (GAFA) 8, 1998, 1086-1128.
    Get from :     Google-ScholarJournalArxiv
  2. A. Soffer, M. Weinstein, Nonautonomous Hamiltonians, J. Stat. Phys., 93, 1998, 359-391.
    Get from :     Google-ScholarJournalArxiv
  3. A. Soffer, M. Weinstein, Ionization and scattering for short lived potentials, Lett. Math. Phys., 1999, 48, No.4, 339-352.
    Get from :     Google-ScholarJournal
  4. P. Miller, A. Soffer, M. Weinstein, Methastability of Breather modes of Time Dependent Potentials, Nonlinearity, 13, (2000), 507-568.
    Get from :     Google-ScholarJournalArxiv
  5. O. Costin, A. Soffer, Resonance theory for Schrödinger Operators, Comm. Math. Phys., 224, (2001), 133-152.
    Get from :     Google-ScholarJournalArxiv

Rigorous numerical schemes

  1. A. Soffer, C. Stucchio, Reflectionless Propagation Algorithm for the Schrödinger Equation, (2006),   100+ pages.
    Get from :     Download PDF
  2. A. Soffer, C. Stucchio, Open Boundaries for the Nonlinear Schrödinger Equation, J. Comp. Physics, 225, No.2 (2007) 1218-1262.
    Get from :     Google-ScholarJournalArxiv
  3. A. Soffer, C. Stucchio, Multiscale Resolution of Shortwave-Longwave Interaction, Comm. Pure Appl. Math Vol. LXII 0082-0124 (2009)
    Get from :     Google-ScholarJournalArxiv
  4. A. Soffer, C. Stucchio, Stable Open boundaries for Anisotropic waves, preprint (2008).
    Get from :     Google-ScholarArxiv

Scattering on manifolds

  1. P. Blue, A. Soffer, Semilinear wave equations on the Schwarzschild manifold I:local decay, Advances in Dif. Eqs., 8, No. 5 (2003), 595-614.
    Get from :     Google-ScholarArxiv
  2. P. Blue, A. Soffer, Phase space analysis on some black hole manifolds J. Func. Analysis,256 (2009) No. 1, 1-90.
    Get from :     Google-ScholarJournalArxiv
  3. W. Schlag, A. Soffer, W. Staubach, Decay estimates for the Schrödinger Evolution on asymptotically conic surfaces of revolution I, Trans. Amer. Math Soc. 362 (2010) No.1, 289-318
    Get from :     Google-ScholarArxiv
  4. P. Blue, A. Soffer, Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole, Preprint (40 pages) (2007), submitted.
    Get from :     Google-ScholarArxiv
  5. P. Blue, A. Soffer, A space-time integral estimate for large data semi-linear wave equations on Schwarzchild manifold, Letters in Math. Phys.81, No3(2007)227-238.
    Get from :     Google-ScholarJournalArxiv
  6. Roland Donninger, Wilhelm Schlag, Avy Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background Comm. Math. Phys. 309 (2012) No. 1, 51-86.
    Get from :     Google-ScholarJournalArxiv
  7. Roland Donninger, Wilhelm Schlag, Avy Soffer, A proof of Price’s Law on Schwarzschild black hole manifolds for all angular momenta, Advances in Mathematics Volume 226, Issue 1, 15 January 2011, Pages 484-540
    Get from :     Google-ScholarJournalArxiv

Soliton Dynamics

  1. A. Soffer and M. Weinstein, Multichannel Nonlinear Scattering Theory for Nonintegrable Equations, Comm. Math. Phys., 133, 1990, 119-146.
    Get from :     Google-ScholarJournal
  2. A. Soffer and M. Weinstein, Multichannel Nonlinear Scattering Theory for Nonintegrable Equations II, the Case of Anisotropic Potentials and Data, Journal of Differential Equations, 98 No. 2, 1992, 376-390.
    Get from :     Google-ScholarJournal
  3. A. Soffer, M. Weinstein, Selection of the ground state in the nonlinear Schrödinger equation, Rev. Math. Phys., 16, No.8 (2004), 977-1071.
    Get from :     Google-ScholarJournalArxiv
  4. I. Rodnianski, W. Schlag, A. Soffer, Asymptotic stability of CHANGE NEEDED N-solitons, submitted, (2003), (75+ pages).
    Get from :     Google-ScholarArxiv
  5. V. Fleurov, A. Soffer, Nonlinear effects in tunneling escape in CHANGE NEEDED -body quantum systems, Europhysics Letters, 72, No.2 (2005), 287-293.
    Get from :     Google-ScholarJournalArxiv
  6. A. Soffer, M. Weinstein, Theory of Multidimensional Nonlinear Dispersive Waves: From Exact Results to Applications, Phys. Rev. Lett. 95 213905(2005).
    Get from :     Google-ScholarJournalArxiv
  7. G. Dekel, V. Fleurov, A. Soffer, C. Stucchio, Temporal dynamics of tunneling. Hydrodynamic approach, Physical Rev. A. 75 043617(2007).
    Get from :     Google-ScholarJournalArxiv
  8. A. Soffer, Soliton Dynamics and Scattering, International Congress of Mathematicians Vol III,(2006).459-471
    Get from :     Google-ScholarJournal[pdf]
  9. A.Barak, O. Peleg, C. Stucchio, A.Soffer, M. Segev Observation of Soliton Tunneling Phenomena and Soliton Ejection, Phys. Rev. Lett. 100, 153901 (2008).
    Get from :     Google-ScholarJournal
  10. A. Soffer Geometric Characterization of Solitons, Comm. Partial Differential Equations 33 (2008), no. 10-12, 1953–1974
    Get from :     Google-ScholarJournalArxiv
  11. E. Cohen, S. Muenzel, J. Fleischer, V. Fleurov, A. Soffer Jet-like tunneling from a trapped vortex Physical Review A 88.4 (2013): 043833.
    Get from :     Google-ScholarJournalArxiv

Other

  1. N. Komarova, A. Soffer, Nonlinear waves in double-stranded DNA, Bull. Math. Biology, 67, No.4 (2005), 701-718.
    Get from :     Google-ScholarJournal

Nonlinear Waves

  1. J. Ginibre, A. Soffer and G. Velo, The Global Cauchy Problem for the Critical Nonlinear Wave Equation, Journal of Functional Analysis, 110, No. 1, 1992, 96-130.
    Get from :     Google-ScholarJournal
  2. A. Soffer, M. Weinstein, Resonances, Radiation Damping and Instability in Hamiltonian nonlinear wave equations, Inventiones mathematicae, 136, 1999, 9-74.
    Get from :     Google-ScholarJournalArxiv
  3. H. Lindblad, A. Soffer, A remark on long range scattering for the nonlinear Klein-Gordon equation, J. Hyperbolic Diff. Eqs., 2, No.1 (2005), 77-89.
    Get from :     Google-ScholarJournalArxiv
  4. H. Lindblad, A. Soffer, Asymptotic Completeness for the critical Klein-Gordon Equation, Lett. Math. Phys., Vol.3 (2005)249-258.
    Get from :     Google-ScholarJournalArxiv
  5. H. Lindblad, A. Soffer, Scattering and small data completeness for the critical nonlinear Schrödinger equation,Nonlinearity 19 (2006) 345-353
    Get from :     Google-Scholar,   Arxiv
  6. S. Fishman, Y. Krivolapov, A. Soffer, On the problem of dynamical localization in the nonlinear Schrödinger equation with a random potential, J. Stat. Phys. 131 (2008), no. 5, 843–865.
    Get from :     Google-ScholarJournal
  7. Juerg Froehlich, Zhou Gang, Avy Soffer Some Hamiltonian Models of Friction J. Math. Phys. 52 (2011) No.8, 083508.
    Get from :     Google-ScholarJournalArxiv
  8. S.Fishman, Y. Krivolapov, A. Soffer The Nonlinear Schrödinger Equation with a random potential: Results and Puzzles, Nonlinearity 25 (2012), no. 4,pages R53-R72 .(Solicited)
    Get from :     Google-ScholarJournalArxiv
  9. Juerg Froehlich, Zhou Gang, Avy Soffer Friction in a model of Hamiltonian Dynamics Comm. Math. Phys. 315, 401444 (2012).
    Get from :     Google-ScholarJournalArxiv
  10. S. Fishman, A. Soffer Multiscale Time Averaging, reloaded (2012), SIAM Journal of Math Analysis, 46(2), 13851405 (2014).
    Get from :     Google-ScholarJournalArxiv
  11. H Lindblad, A Soffer Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities Trans. AMS, to appear. arXiv preprint arXiv:1307.5882
    Get from :     Google-ScholarArxiv

Manuscripts

  1. I.M. Sigal and A. Soffer, Asymptotic Completeness for Long Range 3-body Systems, (40 pages), preprint, Caltech 1987, (ftp://www.math.rutgers.edu/pub/soffer).
    Get from :     Download PDFCHANGE NEEDED

Quantum Theory and Scattering

  1. I.M. Sigal and A. Soffer, The N -particle Scattering Problem-Asymptotic Completeness for Short Range Systems, Annals of Math., 126, 1987, 35-108.
    Get from :     Google-ScholarJournal
  2. I.M. Sigal and A. Soffer, Local Decay and Propagation Estimates for Time Dependent and Time Independent Hamiltonians, (50 pages), preprint, Princeton 1988,
    (ftp://www.math.rutgers.edu/pub/soffer).
  3. I.M. Sigal and A. Soffer, Long Range Many Body Scattering Asymptotic Clustering for Coulomb Type Potentials, Inventiones Mathematics, 99, 1990, 115-143.
    Get from :     Google-ScholarJournal
  4. A. Soffer, On the Many Body Problems in Quantum Mechanics, Méthodes Semiclassiques, Astérisque, 207, 1, 1992, 109-152.
    Get from :     Google-Scholar
  5. I.M. Sigal and A. Soffer, Asymptotic Completeness for NEEDS CHANGEParticles Systems with Coulomb-type Interactions, Duke Math. J. 71, No. 1, 1993, 243-298.
    Get from :     Google-ScholarJournal
  6. I.M. Sigal and A. Soffer, Asymptotic Completeness of Particle Long Range Scattering, J. Am. Math. Soc., 7, No. 2, 1994, 307-334.
    Get from :     Google-ScholarJournal
  7. V. Bach, J. Fröhlich, I. M. Sigal, A. Soffer, Positive Commutators and Spectrum of Pauli-Fierz Hamiltonians of Atoms and Molecules, Comm. Math. Phys., 207, 1999, 557-587.
    Get from :     Google-ScholarJournal
  8. W. Hunziker, I. M. Sigal, A. Soffer, Minimal Velocity Bounds, Comm. PDE, 24, (1999), No. 11/12, 2279-2295.
    Get from :     Google-ScholarJournalArxiv
  9. I. Rodnianski, W. Schlag, A. Soffer, Dispersive analysis of charge transfer models, Communications on Pure and Applied Mathematics 58, Issue 2 (2005), 149-216.
    Get from :     Google-ScholarJournalArxiv
  10. Marius Beceanu, Avy Soffer The Schrödinger Equation with Potential in Rough Motion Comm. Partial Differential Equations 37 (2012), no. 6, 9691000
    Get from :     Google-ScholarJournalArxiv

Probability theory and statistical physics

  1. M. Schwartz and A. Soffer, An Exact Inequality for Random Systems Applications to Random Field, Phys. Rev. Lett., 55, 1985, 2499.
    Get from:     Google-Scholar,  Journal
  2. M. Schwartz and A. Soffer, Critical Correlation, Susceptibility Relations In Random Field Systems, Phys. Rev., B15 , Rapid Comm. 33, No. 3-4, 1986, 2059-2061.
    Get from :     Google-ScholarJournal
  3. E. Carlen and A. Soffer, Entropy Production by Block Spin Summation and Central Limit Theorems, Comm. Math. Phys. 140, No. 2, 1991, 339-371.
    Get from :     Google-ScholarJournal
  4. E. Carlen, A. Soffer, Propagation of Localization optimal entropy production and convergence rates for the centarl Limit Theorem submitted (2011), (22 pages).
    Get from :     Google-ScholarArxiv
Advertisements